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Abstract: This paper investigates a biologically inspired orientation reflex for 
air vehicles and munitions in the endgame phase flight.  The reflex is based 
upon an artificial neural network model of the American Cockroach’s escape 
reflex.  Guidance commands are output to a Linear Quadratic Regulator (LQR) 
autopilot that pilots the munition to an optimal path destination and orientation 
for target strike or obstacle evasion.  Simulation and flight test results are pre-
sented that demonstrate the reflex’s capability for aerial collision avoidance and 
instantaneous target strike on evasive targets, even in the presence of false or 
disruptive sensor data. 

1   Introduction 
The problem of directing a tactical missile to intercept mobile targets has been re-

ferred to as the most challenging of guidance and control problems [1]. In the classi-
cal approach, known as proportional navigation (Pronav), a controller attempts to 
align the velocity vector of the munition with a line-of-sight vector to its target.  Even 
today, Pronav provides the basis for much of munition guidance and control [2]. 

Three fundamental phases of munition flight have been defined with respect to 
guidance and control [3].  These phases are commonly referred to as midcourse, ter-
minal, and endgame stages of flight [1].  Midcourse guidance is, in effect, from the 
time of launch until target sensor acquisition.  Once the sensors acquire the target, 
terminal guidance is initiated.  The last second of terminal guidance is referred to as 
endgame.  Endgame is worth treating as a separate problem since uncertainties in 
guidance need to be corrected much more rapidly, thrust may be unreliable due to 
time delay [2], and missile failure is most often associated with this phase [1].  

The endgame part of intercept has received less attention in guidance and control 
literature than its midcourse and terminal counterparts [1]. Cottrell [4] attempted to 
improve end-game performance by extending classical Pronav, Dowdle et al., [5], 
generalized the LQG regulator, Looze et al. [6] used roll commands to compensate 
for target estimation error.  Cho et al. [7] proposed drag minimization for missiles 
with non-constant velocities.  Forte and Shinar [8] formulated the planar intercept as 



a differential game. Dougherty and Speyer [9] concluded that integrating air frame 
response equations is typically not feasible in real-time, and proposed pulse functions 
to approximate forces.  It has also been noted that although non-linear models could 
aid in air vehicle control they are typically too large for on-board computers [1,3]. 
Several researchers have proposed to surmount this problem through the use of neural 
networks due to their capability to represent complex data in compact structures ([10] 
provides a brief survey). 

1.1   Scope of work 
In this work, a targeting/goal-acquisition reflex for autonomous air vehicles is in-

troduced based upon a distributed network of artificial neurons that mimic the neural 
organization of the escape system in the American Cockroach.  Although the escape 
response of the American Cockroach has evolved under a set of goals that are obvi-
ously different from that of a target-seeking reflex [11], extracting certain aspects of 
its performance nevertheless has the potential to improve endgame munition guidance.  
The primary deviation in functionality derives from the fact that an intercept reflex 
demands a specific goal point, whereas an escape response is designed to reach any 
position outside a threat.  The nature of evasion entails an imprecision that may pur-
posefully be integrated into escape; exact precision may result in a predictable move-
ment observable to predators that could decrease an animal’s chances for survival 
[11]. 

Despite these differences, important goals from a targeting system are consistent 
with those of an animal’s escape response.  The goal of a seeking system is to detect a 
target and rapidly evoke appropriate intercept maneuvers.  Specifically, self-
orientation, perception, decision-making, motion planning, reaction within context, 
and extremely rapid real-time control are all desirable and common characteristics.  
Finally, in addition to these criteria, an in-depth level of understanding has been 
achieved in mapping the cockroach escape response [19; 20] which is unprecedented 
in relation to similar biological mechanisms usable for autonomous control.   

An endgame air-to-ground targeting scenario was selected as a case study for vali-
dation.  In this scenario, a small airborne autonomous munition fires a kinetic energy 
projectile straight downward from its center of gravity to strike a ground target. The 
firing action of the munition is depicted in Figure 1.  The task of the guidance reflex 
is to pilot the munition to a point where the projec-
tile trajectory would strike target center. Note that 
the angular orientation of the vehicle as well as its 
position is critical for proper target strike.  Thus, 
unlike the majority of munition targeting, all six 
degrees of freedom are relevant.   

2  Neural Organization of the Cockroach 
Escape Response 

The cockroach escape circuit accurately identi-
fies air velocity gradients arising from attacking 
predators using mechanoreceptive hairs.  This in-
formation is conducted to the thorax by ventral giant 
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Variable Parameter Description 

F~  Total force vector acting on airframe 

M~  Total moment vector acting on airframe 
s~  Position vector of mass center of airframe 
ω~  Angular velocity of airframe (body-fixed) 
m Air vehicle mass 
I Inertia matrix of air vehicle 

δe, δa, δr Elevator, aileron, and rudder deflections 
V Absolute vehicle airspeed (global) 
u Forward velocity (body centered) 
v Side velocity (body centered) 
w Downward velocity (body centered) 
α Angle of attack=tan-1(w/u) 
β Sideslip angle=tan-1(v/u) 
p Angular roll rate 
q Angular pitch rate 
r Angular yaw rate 
ψ Roll angle 
θ Pitch angle 
φ Yaw angle 
xe X position (global) 
ye Y position (global)  
H Altitude (global) 

Table 1 – Nomenclature 

interneurons, and integrated by a network of type A thoracic interneurons (TI A ’s). 
The TI A ’s direct escape movements via both direct and indirect connections to the leg 
motor neurons. All of this is accomplished in approximately 60ms [11]. 

A reaction that considered only a singular condition would provide little adapta-
bility to circumstance.  The cockroach solves this problem by incorporating context 
dependence into its system.  In addition to monitoring wind inputs from predators, the 
TIA s receive input from exteroceptive cues such as antennal contact, auditory re-
sponses, ambient light and proprioceptive cues on the state and position of the legs.  
The TIA s interpret the data on wind direction in the context of everything the cock-
roach is experiencing at the moment of the attack [11].  The context dependent nature 
of the escape system permits a very short reaction time because a suitable response 
need not be planned at the time of a particular threat, but is continuously updated 
based upon the animal’s physiological state and environmental context.  

The neural circuit that comprises the cockroach escape system has been docu-
mented by intracellular analysis and modeled on a computer as a distributed network 
of artificial neurons [12].  It has also been developed into a collision avoidance sys-
tem for ground vehicles [13].  This work provided the basis for the expansion of the 
system into the guidance reflex for air vehicles presented in this paper. 

3   System Overview 
The general equations of motion 

of a 6-degree of freedom (dof) rigid 
airframe may be described through 
Newton’s Laws in terms of the 
nomenclature enumerated in Table 
1: 
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Aerodynamic forces acting on an 
air vehicle, are often expressed in 
the form [14]: 
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Where both [C] matrices are 
dimensionless coefficients which are 
functions primarily of aircraft state 
z~ = (V, α, β, p, q, r), and each [Q] 
is a product of flight dynamic 
pressure, and aircraft reference area 
or characteristic length, respectively.  The system inputs, u(t), include aerodynamic 
forces developed by actuator deflections and propulsive forces, and environmental 



effects, whose impact on the air vehicle may be reflected in state space form:  
     ~~~ uBzAz +=&  (3) 

For simulation testing, a flight vehicle model was extracted from [14] representing a 
light, single engine, high wing aircraft.  This model was modified to improve respon-
siveness, and more closely resemble the flight characteristics of autonomous airborne 
munitions.  Since the munition is designed to loiter over battlefields while searching 
for hostile targets, the air vehicle model was linearized around a steady state operat-
ing point reflecting approach to a hostile target at a cruising state.  A linear quadratic 
regulator (LQR) autopilot was designed for this air vehicle model to execute the com-
mands of the guidance reflex.  Although the action of the autopilot could have been 
omitted by assuming an idealized aircraft response, testing the system with a designed 
autopilot will better demonstrate the utility of the guidance reflex.  As with the major-
ity of existing autopilot systems, the LQR regulator was designed to move flight 
control surfaces (δe, δa, δr) in 
response to desired roll rate (p), 
pitch rate (q), and yaw rate (r) 
commands [14].  

Figure 2 maps the system 
flow of the endgame guidance 
reflex and its role in on-line 
flight use.  The position of the 
target as well as information on 
the current state of the aircraft (velocity, orientation, etc.) are provided to the end-
game guidance reflex, which gives higher level commands in the form of desired roll, 
pitch, and yaw rates (p, q, r respectively) to a vehicle autopilot.  The autopilot then 
manipulates aircraft control surfaces (δe, δa, δr), to achieve these commands.  Alter-
ing forward thrust was determined to be not viable, since engine delay invalidates 
performance during endgame.  

4   Insect Inspired Guidance Reflex 
The proposed target-seeking circuit for autonomous munitions is shown in Figure 

3. The architecture of this neural network is based on a model of the cockroach es-
cape circuit [12].  Boxed labels identify functional descriptions within the aircraft 
target seeking reflex, while italicized text delineates the parallel structures within the 
cockroach escape circuit. A sigmoidal function with bias was used to model the in-
put-output relation of a neuron.  The three layers comprised functions based upon 
exteroceptive and proprioceptive inputs, and output commands directly to an autopi-
lot to guide the munition to its target.  It is important to note that significant altera-
tions to the cockroach neural circuit were made for system implementation, and no 
claims to their biological validity are being put forth. 

Although specific sensor development or processing was beyond the scope of this 
work, sensory structures are designed to integrate information from a variety of 
sources in a manner similar to that of the cockroach.  Information on goal position is 
processed through exteroceptive structures monitoring the position of the desired 
target in a manner that is analogous to the insect’s use of cerci.  The actions of the leg 
sensory neurons in the cockroach escape reflex are paralleled in the guidance neural 

AutopilotTarget Position Targeting
Neural Circuit

Controller

Air Vehicle

Air Vehicle
Inertial
Sensors

Plant

 
Figure 2: Control Loop 



circuit through propriocep-
tive (inertial) sensors pro-
viding feedback on the 
current orientation of the 
vehicle, normalized with 
relation to flight envelope 
limits.   

Although regular posi-
tional updates permit veloc-
ity information to be ob-
tained for moving targets, 
the thoracic interneuron 
layer within the cockroach 
escape response utilizes 
information primarily asso-
ciated with the current position of a threat with respect to the animal itself, and the 
current state of the animal.  A similar approach was implemented within the target-
seeking reflex.   

The actions of the ventral giant interneurons (vGI) developing threat fields in the 
cockroach was mimicked through functions normalizing exteroceptive and proprio-
ceptive inputs with respect to the air vehicle, and arranging these data to create a 
target field to be passed to the input neurons.  After normalization, this output (ITI) is: 

),,,,,,(~ rqpVMyxI ttottotTI =   (4) 
where (xtot, ytot) is the vector difference of the current target point of the aircraft 

(the strike point of the projectile trajectory shown in Figure 1), and Mt is the absolute 
distance from the strike point to the target.  The munition strike point (xt, yt) may be 
represented by: 
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where subscript f indicates states at the final point of flight and the ^ symbol repre-
sents the Euler angles transformed into angular orientations on the body centered 
inertial frame.  Thus (xtot,ytot) will be: 
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where T is a vector of the planar target position. (Mt) is simply the absolute distance 
from the firing point to the target point: 

[ ]Ttottot yxM =  (7) 

The quantity in the double brackets represents the Euclidean norm.   
The total vector (ITI), derived from Equations (5-7), represents the sum of the ex-

teroceptive and proprioceptive inputs provided to the input neurons of the targeting 
reflex.  These inputs are based purely on present observations; knowledge of the past 
will be incorporated in decisions made based upon these inputs by the trained layers 
within the circuit. 
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Figure 3: Guidance Neural Circuit 



Eighteen neurons reside in the input (thoracic) layer and twelve neurons reside in 
the local layer. These numbers are chosen arbitrarily depending on desired perform-
ance.  Each input neuron receives scaled input at the current time t.  The guidance 
command neurons receive the message from local neurons, and output (p, q, r) com-
mands to the autopilot.  The neural network was trained using back propagation for 
the vehicle to respond appropriately to targeting endgame situations.  System learning 
was confined to varying connection weights.  In order to find the appropriate connec-
tion weights given the known structure of the circuit, sufficient data is needed to train 
this system. These data were developed from an evolutionary path planning algorithm 
which developed optimal intercept patterns in endgame situations for training data. 

5   Generation of Training Data 
Given the insect-based neural circuit, appropriate target-seeking patterns must be 

developed to provide training data for on-line use.  Each pattern will be a “path”, 
representing air vehicle inputs to strike a target in a certain situation; several such 
paths may then be used to train the neural circuit. The problem of route planning for 
complex vehicles may be viewed as one discrete multivariable functional optimiza-
tion. 

A class of heuristic searching methods based upon simulated evolution, known 
broadly as Genetic Algorithms (GAs), have recently become very popular for discrete 
optimization problems characterized by many local minima in nondifferentiable, 
discontinuous or constrained problem spaces.  These evolutionary techniques are 
population-oriented; successive groups of feasible solutions are generated stochasti-
cally following laws similar to natural selection. This contrasts standard programming 
techniques that normally follow a single trajectory until a solution is reached.  

Many previous path planners cannot accommodate a variety of optimization crite-
ria or allow changes in these standards without changing the characteristics of the 
planner or the search map.  Evolutionary approaches have this ability and are flexible 
to discontinuities, changes in environment, and uncertainties.  For the training of the 
insect-based neural flight circuit an evolutionary flight-path planning algorithm ca-
pable of mapping paths for free-flying vehicles functioning under aerodynamic con-
straints is implemented.  [10] details the implementation process for the evolutionary 
generation of targeting trajectories.  In future work, this planner may function as a 
stand-alone trajectory generation system for all manner of air vehicles. 

6   System Training 
The evolutionary path planning algorithm was implemented for to generate train-

ing data for the flight neural circuit.  Since the guidance reflex is designed for the 
endgame, distances were scaled based upon how far the simulated vehicle could 
travel in that time. Training situations were comprised of input and output generated 
per sampling time ∆t, so each case gave several training patterns.  Data from the tar-
get field normalization function and inertial sensors in the guidance reflex constitute 
the training inputs; the desired commands are the outputs of guidance command neu-
rons from the training outputs. 



6.1  Incorporation of Context Dependence 
After the network was trained, the system was tested for ground vehicle strike 

across the targeting range.  Although the reflex was capable of striking static targets 
with reasonable accuracy, it displayed little adaptability to moving targets.  One way 
that the cockroach achieves adaptability to circumstance is through a context depend-
ent shifting of its input-output weights based on the situation and environment of the 
animal [11].  This mechanism served as an inspiration for further training of the guid-
ance neural circuit. Sets of synaptic connections were derived for targets located to 
the left of the munition, to the right of the munition, and directly in front of the muni-
tion.  A simple switching strategy between these three sets of weights based upon 
relative target position was implemented to lend context dependent characteristics to 
the guidance reflex.  

7   Simulation Results 
After enhanced training and implementation of context-dependent weight shifting, 

the system was tested for both static and dynamic targets. Figure 8 shows a typical 
targeting trajectory for a stationary ground target, located 32m in front of the muni-
tion.  The upper plot shows the position of the ground target (‘o’) and the projection 
of the munition strike point on the ground plane for the entire flight (’x’).  The global 
position of the plane is also plotted, and a firing trajectory is shown at the end of the 
flight.  The targeting reflex combines the angular orientations of the aircraft such that 
an accurate firing trajectory is achieved with a strike point 0.67m from the target 
center in a 0.6 second flight.  The lower plot shows the angular rate commands given 
by the guidance reflex versus time, and the action of the autopilot. 

Although the guidance neural circuit was trained only with information on static 
targets, context dependent characteristics should allow for strike of mobile ground 
vehicles as well. Figure 9 shows one such case, for a ground vehicle moving forward 
at a speed of 9.6 m/s (30% of the speed of the munition). Despite having never been 
exposed to a moving target, the reflex adjusts to the context of its changing environ-
ment to achieve a target strike 0.96m off center for its 0.6 second flight.  Testing of 
this capability was performed with a target at a random location, random direction, 
and velocity (< 35% of the air vehicle).  Over several thousand runs, 83% of the 
simulations resulted in a target strike.  The percentage of successful strikes over sev-
eral simulations will henceforth be referred to as the “target strike ratio” 

 
Figure 8 



Performance vs. Evading Targets 
In the real world, an on-line targeting system may have to deal with abrupt ran-

dom changes in target path, or even analogous avoidance maneuvers.  The targeting 
system was therefore tested in several situations when targets made sudden changes 
in speed and heading. Figure 10 shows one such simulation, where a target moving 
30% of the speed of the munition makes a 90° turn 0.2 seconds into the flight.  The 
guidance reflex can be seen making adjustments to achieve a strike point 0.6 m off 
target center in a 0.8 second flight. The capability of the reflex to deal with changing 
target paths was tested again with random target placement and velocity, but with an 
accompanying random (90°) turn during tracking.  A target strike ratio of 79% was 
achieved. 

An acquisition system can sometimes be defeated if the target turns into the muni-
tion path to force rapid tracking without violating a flight envelope.  Figure 11 shows 
the target-seeking reflex responding to this escape tactic.  The target begins moving 
perpendicular to the munition path, but upon approach, turns directly into the muni-
tion and accelerates. A target strike was achieved 1.1m away from the target center. A 
73% target strike ratio was achieved with targets executing a 90° “intelligent” turn 
into the munition path. 

Performance vs. Targets wit Sensor Disruption 
As a final simulation test of the reflexive system, a ground target was given the 

capability to temporarily disrupt the exteroceptive sensors of the targeting system.  
Figure 12 shows the results of the munition tracking a ground target capable of sen-
sor disruption.  Initially, the air vehicle receives data indicating the target is located 
26 m in front of it, and 4 m to its right.  As the munition approaches the target, its 
actual position is revealed to be 10 m in front and 8 m to the right of the perceived 
position. False and actual positions of the target are shown in the top figure.  The 
guidance reflex adjusts to achieve a final strike point 0.74 m from target center.  This 
capability was tested with a randomly placed target capable of disruption up to 10m 
behind and 6m to the left or right of its actual location. A 67% target strike ratio was 
achieved over several thousand runs. 

These results demonstrate that the feasibility of implementing a neural network 
endgame targeting reflex for autonomous munitions based upon an insect escape 

Figure 9 Figure 10 



circuit.  Several cases for air-to-ground vehicle targeting have been successfully exe-
cuted for both static and dynamic targets.  The reflex is capable of directing target 
strike for targets moving on unpredictable paths and working through sensor disrup-
tions. Future work involves further exploration of target escape strategies to quantify 
system limits, and hardware implementation on aircraft platforms. 

8   System Flight Validation 
Hardware tests were performed to prove system performance under the rigor of 

actual flight. In addition to target-seeking, an aerial obstacle (crash) evasion reflex 
was implemented.    

The purposes of the flight tests were to prove the capability of the reflex to suc-
cessfully pilot a real aircraft through unpredictable scenarios by issuing reference 
signals to a rate-based autopilot.  All decisions made by the neural network guidance 
law must be made within time-frames suitable for use on the actual aircraft.  During 
flight tests, a test aircraft is piloted remotely along a prescribed path representing 
midcourse and terminal phases of flight, until the outer edge of a circular alarm re-
gion is encountered.  When the plane enters this radius, it is said to be in the endgame 
stages of flight, and either a target seeking alarm or obstacle evasion alarm is trig-
gered.  The alarm engages an endgame control loop that relays a reference signal, 
provided by a neural network, to pilot the plane into or around the target.  For the 
sake of simplicity, the actual three-dimensional flight test scenario is projected onto a 
two dimensional cartesian grid.  The goal of the plane was to strike (collide with) or 
evade a virtual aerial target. Also, for the simplified flight vehicle, the thoracic layer 
of hidden neurons in the neural circuit was severed.  Finally, the full implementation 
of the genetic algorithm was not necessary for the generation of training data; kine-
matic data alone was used.  Also note that the aircraft is not equipped with targeting 
sensors, but is fed an initial target relative position which it updates based upon iner-
tial feedback. 

Hardware System Overview 
The hardware system consists of a 1/4 scale Piper J-3 Cub aircraft, a transmitter, 

receivers, control surface servos, a dynamic (inertial) measurement unit (DMU) a set 
of wireless modems, and a ground based computer.  The 1/4 scale Cub is a high wing 
monoplane with a wingspan of 108 inches, a wing area of 1,610 inches2, and a length 
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of about 68 inches.  The engine has a displacement of 2.1inches3 (35cc), spins a 20x8 
prop, and has a cruising speed of 30-35mph.  With the DMU installed, the entire 
plane has a wet weight of 30 lb.  The upper left portion of Figure 13 shows the test 
plane constructed.   

The transmitter has an internal computer that enables a human pilot (flying the 
plane through joysticks remotely) to mimic midcourse and terminal phases of flight.  
The computer then assumes control during endgame (when the plane enters the target 
“alarm” radius). 

This experimental setup is chosen because of its flexibility.  Note that the ground 
computer contains the entire controller portion of the loop, and can be modified while 
the plane is in the air.  The autopilot used in these experiments is an open loop con-
troller designed to move flight control surfaces (δe, δa, δr) in response to desired roll 
rate (p), pitch rate (q), and yaw rate (r) commands.  Altering forward thrust is not 
viable since unpredictable engine delays are difficult to model.  Flight tests were 
performed with an alarm radius of 30m. 

Flight Implementation Results 
Figure 14 shows typical flight responses from targeting and evasion neural net-

works, projected onto a two dimensional Cartesian grid.  Figures show graphs of 
actual plane path data.  Note that the z-axis is always pointing downward, and the 
coordinate system is right handed. Inside the alarm radius, represented by the large 
circle, the targeting or evasion neural network is engaged to react to a stationary vir-
tual pole. 

Since target-seeking is a more formidable problem than target evasion, several 
typical target seeking responses are shown. In all of flight results shown, the planned 
course is along the x-axis of the figure, and the plane is flying in the positive x direc-
tion.  In these examples, the terminal guidance controller uses servo limits that corre-
spond to half of maximum control surface excursion, so it cannot track a heading 
perfectly.  This is desirable because it forces the plane to enter the alarm radius at 
unpredictable orientations.  Therefore, the neural network is subjected to more rigor-
ous tests.  Note that in most flight tests, the terminal controller cannot compensate for 

 
Figure 13: (left) ¼ Scale Piper Cub Test Platform; (right)Actual flight trace of 

aircraft moving into alarm radius, striking virtual target, holding heading until exit-
ing alarm radius, and resuming original flight path, corresponding to Figure 14D 
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wind, and plane is being blown toward the right or left of the desired x-axis path. 
In Figure 14A, the terminal guidance controller is fighting wind, which is push-

ing the plane to the left of the x-axis (off course). Therefore, the plane enters the 
alarm radius in a shallow right turn that terminal guidance system has initiated, in an 
attempt to track the x-axis.  The reflex immediately throws the control surfaces to 
bank the plane left and the plane turns smoothly away from the target.  The neural 
network then tries to fly around the object, but momentum carries it out of the alarm 
radius.  Once outside the alarm radius, terminal guidance turns the plane right to 
again track the x-axis. Figure 14B shows a targeting scenario where the plane has 
been blown off course to the right, and the target is located on the x-axis.  The neural 
controller is able to overcome the wind and smoothly cut leftward, into the target that 
resides on the x-axis. In all targeting scenarios, once the neural controller has hit the 
target, it seeks to track the global heading achieved at impact and fly out of the alarm 
radius.  Note that terminal guidance does not push the plane back toward the x-axis 
because that command would have flown the plane out of the allowed airspace.  A 
human pilot took control shortly after the plane exited the alarm radius. Figure 14C 
shows the plane being blown off course, and oriented away from the target when it 
meets the edge of the alarm radius.  The neural controller turns the plane leftward, 
hits the target, and maintains the heading attained at virtual impact. Figure 14D 
shows a scenario similar to Figure 14C but the target is offset to the right of the 
x-axis.  The plane strikes the target, holds a heading, and flies out of the alarm radius.  

Figure 13 (right side) shows the actual flight corresponding to the trace shown in 
Figure 14D. Images were taken with a digital video camera, stills were extracted, and 
a composite was created.  The action of the plane moving towards the target upon 
entering the alarm radius, flying through the goal point (target), and resuming the 
original path can clearly be seen in the figure.  

During all flights, the neural network is robust to sensor noise, unpredictable 
transmission delays, and dropped data packets.  The major hindrances of using a 
control computer on the ground are the time delay incurred in wireless modem trans-
fer, and the increase in software complexity.  The neural network successfully com-
pensates for these additional constraints during flight-testing. 

A  B  

C  
D  

Figure 14: Evasion (A) and Targeting (B, C, D) responses from flight testing of 
1/4 scale Piper Cub.  Note: the z-axis is pointing into page. 



9   Conclusions 
The results presented demonstrate the feasibility of implementing an insect-based 

control circuit for reflexive flight control.  The performance of the system has been 
proven in both simulation and flight.  It is capable of striking static and maneuvering 
threats, taking evasive action in the presence of false or disruptive sensor data, and 
operating at frequencies suitable for an endgame controller. 
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